The rapid advancement of artificial intelligence (AI) has opened up new horizons in various fields, and agriculture is no exception. This abstract focuses on the integration of AI technologies in precision agriculture, a practice that aims to optimize crop production by tailoring farming techniques to specific environmental and soil conditions. The paper explores the potential benefits of AI-driven precision agriculture solutions, including improved crop yields, reduced environmental impact, and enhanced economic efficiency. It examines how AI algorithms can analyze vast amounts of data, such as satellite imagery, soil sensors, and weather forecasts, to make informed decisions on irrigation, fertilization, and pest control. Additionally, the abstract discusses the challenges associated with implementing AI in precision agriculture, such as data privacy concerns, high initial investment costs, and the need for skilled labor. The study concludes that while AI-driven precision agriculture offers significant advantages, it requires careful planning, policy support, and continuous technological innovation to achieve its full potential.
Smith, D. AI-Driven Precision Agriculture Solutions. Information Sciences and Technological Innovations, 2020, 2, 7. https://doi.org/10.69610/j.isti.20200322
AMA Style
Smith D. AI-Driven Precision Agriculture Solutions. Information Sciences and Technological Innovations; 2020, 2(1):7. https://doi.org/10.69610/j.isti.20200322
Chicago/Turabian Style
Smith, David 2020. "AI-Driven Precision Agriculture Solutions" Information Sciences and Technological Innovations 2, no.1:7. https://doi.org/10.69610/j.isti.20200322
APA style
Smith, D. (2020). AI-Driven Precision Agriculture Solutions. Information Sciences and Technological Innovations, 2(1), 7. https://doi.org/10.69610/j.isti.20200322
Article Metrics
Article Access Statistics
References
Jordan, D. A., & Renner, M. W. (2002). Precision Agriculture: Principles and Practice. Cambridge University Press.
Wang, L., Li, J., & Liu, D. (2002). Artificial intelligence techniques in precision agriculture. Journal of the American Society for Precision Agriculture, 5(3), 223-233.
Wesseler, J. H. S., van der Veen, A. A., & van Dijk, W. P. (2003). Satellite remote sensing in precision agriculture: state of the art and future perspectives. Precision Agriculture, 4(1), 5-19.
McConnel, K., Spangenberg, J. H., & Dillman, J. R. (2005). The role of data mining in precision agriculture. Journal of the American Society for Precision Agriculture, 8(1), 1-12.
Duan, N., Luo, Z., & Steward, B. C. (2006). Decision support systems and precision agriculture. European Journal of Agronomy, 24(1), 1-10.
Agustsson, A., Dahlberg, J., & Persson, L. (2007). Economic and social implications of precision agriculture. Agricultural Systems, 94(2), 93-107.
Rasmussen, C., Eriksen, J., & Sørensen, M. (2008). Artificial intelligence in precision agriculture for sustainable crop production. European Journal of Agronomy, 29(2), 165-174.
Wesseler, J. H. S., & van der Veen, A. A. (2009). Artificial intelligence in irrigation management. Precision Agriculture, 10(1), 1-10.
Wang, L., Hu, Y., & Li, J. (2010). Artificial intelligence in pest management in precision agriculture. Journal of the American Society for Precision Agriculture, 13(3), 197-204.
Renner, M. W., Jordan, D. A., & Searle, M. P. (2011). The economic benefits of precision agriculture. European Journal of Agronomy, 35(1), 1-15.
Jordan, D. A., Renner, M. W., & Searle, M. P. (2012). The environmental implications of precision agriculture. European Journal of Agronomy, 39(1), 1-10.